Audytor H2O

Audytor H2O

Program Audytor H2O is meant for graphical aiding of cold- and hot water systems design, as well as circulation in both dwelling- and public buildings. Allows selection of thermostatic valves in circulation systems.

 

 

New features and improvements introduced in version 7.2

  • extension of the floor heating design module,
  • a new two-dimensional graphics module ensuring better ergonomics and higher readability and speed of displaying graphics,
  • extending the range of mixing group schemes,
  •  improvements in the DWG module,
  • shorter opening time of the project,
  • extension of Excel export with the ability to simultaneously save all tables,
  • other new features.

What's new?

Dividing and joining heating zones, rooms and polygons

Tools for quickly dividing and connecting polygons that define hotplates. One field can be divided into two or three equal fields - horizontally or vertically, respectively. The user can also indicate a dividing line using a broken line. At the same time, the option of combining several cooking zones into one has been introduced.

These functions are especially useful when designing underfloor heating, but can be used for sharing
and joining other polygons (e.g. room zones).

 

Extending the range of mixing group schemes

Extended range of mixing group schemes with the possibility of local mixing at the manifold.

Drawing in drawing

It is possible to insert a fragment of another drawing in the drawing. This significantly increases the possibility of creating clear technical documentation.

Inserting a fragment of a DWG drawing

The ability to easily use one DWG file containing architectural plans of many floors.

The user can indicate which parts of the DWG file are to be used on each floor and then adjust their position using precision panning tools.

Coloring the walls

Display of walls with filling - gray for external walls and yellow for internal walls. This improves the readability of created drawings.

Selection in color

When selecting objects using the window, the selection window is filled with blue, which improves its readability.

Readability of selected objects has also been increased by displaying them with all details in green.

Selective selection

The selective selection function allows you to indicate what elements of the drawings are to be marked (e.g. rooms, pipes, fittings, etc.).

This function is useful when, for example, the user would like to duplicate selected elements from the indicated area to the next floor.

Narrow the range of selected objects in the tables

The functions Leave selected lines and Leave unselected lines allow you to narrow the range of selected objects. After selecting a number of elements in the drawing window, you can then remove from the selection the items indicated in the table or just leave those items.

Precise moving of objects

This function enables precise moving of objects. The user defines the displacement vector, i.e. specifies the start and end points.

This function, combined with the Magnifier tool, enables very precise moving of objects. It is very useful, in the case of matching architectural objects on different floors. Just enable the display of the previous floor and then indicate the corresponding points on the architectural plans of two floors.

Improved critical flow display

When you turn on critical flow display, the other elements of the drawings are displayed less intensively. This makes it even easier to orient yourself in the course of critical circulation.

Drawing adjacent floors

Expanding the possibilities of displaying (drawing) the previous floor.

Currently, elements of the previous storey or the next storey can be displayed, or both. This facilitates adjusting architectural projection positions and location of installation risers.

Temporarily turn off of the label display

The option of temporarily turning off the display of labels during design, improves the readability of drawings on the screen in situations where labels are not necessary.

Adjusting wall thickness

This option allows you to change the thickness of the walls when drawing them:
– CTRL + left square bracket - reducing the wall thickness,
– CTRL + right square bracket - increasing wall thickness.

The same effect can be achieved by pressing the CTRL key while holding the mouse wheel. This function allows easy adjustment of the wall thickness to the loaded building foundation (planview).

Export extension to Excel

The ability to export to Microsoft Excel not only individual tables, but also all tables and diagnostics at once. This significantly reduces exporting time if you need to save a number of tables.

Import and export of drawings in DWG 2018 format

The program has been equipped with the latest cooperation module with DWG and DXF files.

It allows among others:

  • Loading DXF and DWG drawings in the newest versions (until 2018).
  • UNICODE text support for most characters to be displayed correctly.
  • Export of drawings in the following formats: DWG 2000, DWG 2004, DWG 2010, DXF 2000, DXF 2004, DXF 2007, PDF, SVG, CGM, HPHL, SWF.
  • Significantly faster display of complex drawings thanks to the simplified paint function.
  • A more realistic export of drawings to DXF and DWG files.
  • Saving raster drawings in DXF and DWG files.
  • More convenient management of drawing layers

Import of building bases from Autodesk® Revit®

The function allows to create layout of corresponding to the levels on which rooms have been defined in Autodesk® Revit®. The transfer of data takes place via a file generated in Autodesk® Revit® using the Audytor gbXML plugin.

Read more

Export of the installation project to Autodesk® Revit®

The function allows you to export the installation project to a file that can later be loaded into Autodesk® Revit® using the Audytor SET plugin for Revit.

The function allows you to export from the data and export from the results. Export from data allows you to save even an incomplete installation project (not recalculating), for example, the arrangement of the water risers, or the layout of the radiators. Export from results allows us to use technical data of selected pipes and devices in Autodesk® Revit®, eg pipe diameters, valve settings, radiator sizes, and pipe spacing in underfloor heating. In addition, physical quantities are available, such as the medium speed, the power of the radiator, and pressure losses.

Read more

The program enables performing the complete hydraulic calculations for the system

  • Estimates calculation waterflow in the pipes.
  • Selects pipe diameters.
  • Estimates hydraulic resistance of individual system components, together with required disposable pressure.
  • Selects pressure governors.
  • Performs water flows control in the circulation domestic hot water system, by selecting suitable governing components(initial preset valves, orifices, thermostatic valves)
  • computes the required domestic hot water circulation system water flows by the thermal method.
  • selects three-way mixing valves for the domestic hot water system
  • selects heat insulation for the pipes

Benefits of the program

  • The ability to design several systems in one project.
  • Unlimited size of the installation (even thousands of accessories and draw-off points).
  • fast calculation process.
  • Building underlays in the most popular vector and raster formats.

 

While calculations last, the full data correctness check is conducted, including among others:

  • the picture,
  • individual data range (numbers - room symbols, pipes, catalogue symbols, etc.),
  • pipe-run linking coherence within the system (unlinked pipes, incorrectly linked pipes, etc.),
  • accessories location

Correctness check for calculations results include among others:

  • agent pipe flow velocity,
  • water pressure before the receivers,
  • unchoked pressure in circuits caused by the total lack or insufficiency of governing accessories in circulation circuits,
  • pipes insulation,
  • pipe water cooling.

The list of detected errors as a result of the data- and calculations results correctness check is created, where types of errors and their locations are listed.

The program is equipped with the fast error locating mechanism (automatic table location, row and column with the error data, together with indication of the erroneous item in the installation diagram).

Calculations results are presented both in the graphic, as well as table form. Picture layers format and label format for individual system components can be freely modified (the choice of highlighted quantities, color, font size, etc.). Calculations results can be also presented in the system plan view.

The contents of all tables can be formatted (choice of shown columns and rows, font size) and sorted according to freely selected filter.

Tables with calculations results can be printed and moved to other applications functioning in the Windows environment (eg. spreadsheet, word processor, etc.). Print preview function enables viewing the pages before printing.

Calculations results as plan views and installation diagrams can also be plotted onto the plotter or printer. The user can choose the plotting scale. Plot preview function enables to check the pictures before plotting. Larger pictures are printed or plotted in fragments which then can be combined into one-piece printout, so even large pictures can be executed with the ordinary A4 printer.

Data entry

Data can be entered to the program graphically on plan views or diagrams. The necessary information about the drawn elements are introduced into the tables associated with the plan views or diagrams. As a result of table approach, it is possible to edit quickly data related to single pipes, radiators, fittings, as well as whole selected groups of elements. Each component of the system is equipped with the validation and support system that allows to obtain information about the quantity being inputted or the relevant catalogue data.

In order to facilitate data entry, the software includes:

  • The ability to edit simultaneously many system components.
  • The possibility of using ready-made blocks.
  • Intelligent functions duplicating any parts of a drawing horizontally and vertically, together with the appropriate renumbering of elements.
  • Possibility to define an unlimited number of custom blocks consisting of any parts of the drawing.
  • Quick access to auxiliary information on the quantities being inputted.
  • The pop-up buttons facilitating access to frequently used components.
  • Function dynamically linking data from a drawing with the data in the table.
  • Functions connecting automatically fittings, radiators and other system components by pipes.
  • Automatic creation of the risers on the basis of plan views.
  • Editing data in tabular form giving the possibility of setting of parameters of multiple selected items at the same time.
  • Dynamic linkage between the drawing data table highlights in the drawing, the element being edited in the table.

Data diagnostic system

  • Each inputted component is equipped with the validation and support system that allows to obtain information about the values or evokes the relevant catalogue, as well as test of data.

  • While entering data the program checks its correctness on an ongoing basis. This allows a significant reduction in the number of errors. During the calculation process, complete data validation takes place. As the result of that the list of errors, warnings and hints is created. The list includes the information about the significance levels and the place of the problems.

  • After the calculations, program analyses the obtained results. The analogue list of messages is created. Extensive system diagnostics enables the designer to fully assess the quality of the design. The program is equipped with a mechanism for quick search of where the error occurred (automatic finding a table, a row and a column with wrong data and faulty component is indicated in the drawing).

Building underlays

The program enables creation of the complete graphic documentation of the system design, thanks to the possibility of displaying the calculations results on the storey plan views. It is often required to enter the picture of the project under design. Pictures can be entered by reading pictures from a file, scanning or pasting from clipboard. After being entered, pictures frequently require levelling, calibrating, cropping and additional correction.

Technical drawings (eg. underlays) are now as a default created using computers. They are then available in the electronic format as files. Vector formats (eg. DWG, DXF, WMF, EMF) are the most suitable for technical drawings. Picture files can also be created as scans, then they are almost always available in the raster format (BMP, JPG, JPEG, TIF, TIFF, GIF, ICO, PNG).

Usually, while loading the picture, it will be necessary to complete information from the dialogue Picture units. After the picture has been inserted into the program it is usually necessary to perform its levelling and cropping, also the calibration might prove necessary to adjust the picture to its electronic equivalent. It is possible to choose the resolution and quality of the scan and to save scanned documents in a selected graphical format. The program is equipped with scanners compatible with the TWAIN specification.

Bonding and scaling drawings

HL programs (from version 6.0), and CH (from 4.0) are equipped with the function of Graphic creation of a building model. This function gives you the opportunity to draw a building model. To simplify the action of drawing, you can load a drawing base into the program. The file being loaded can come from an external program for creating technical drawings (eg DWG), or from a scanned drawing (eg JPG). The scanned drawing can be divided into several files. Drawings scanned into several files usually do not keep the scale precisely enough. They can also be rotated relative to each other by a small number of degrees.

Drawing bonding allows you to quickly scale multiple scanned drawings (in different sizes and rotated) and bond them with one another.

Graphical editor

Drawing with marked room zones is necessary to create the design of the system. The designer can draw the room zones manually or load them together with the plan views form heat load program (HL 6.5). If in HL 6.5 the three-dimensional model of the building was created, the plan views together with heat load results will be imported to SET program. The building entered in tabular form will be loaded as a list of rooms with the results. 

The most comfortable mode of work using the full potential of cooperation between programs HL and SET: 

  1. Loading building plan views from files such as DWG, DXF, WMF etc. to HL program.
  2. Drawing in HL program a 3D model of the building and running the thermal calculations.
  3. Loading results from HL program into SET program (heat load and floor plan views).
  4. Drawing the system in software installation HL program and performing calculations.

Design of the system can be done in the diagram, in plan views and partly in the diagram and partly in plan views. 
In the case of drawing the system in plan views the program automatically creates a simple diagram “connecting” plan views.

The system default data inheritance

A significant part of the parameters entered at the beginning of the building defining is data typical for the whole building (i.e. the default data). This data is used by the system of data inheritance.

The user can define for each class of device among others default catalogue symbol. The symbol is automatically assigned (inherited) to each device placed in the design. The default catalogue symbol can be changed at any time, even after inserting devices to the drawing. Change of the symbol in global data will change the symbols of all devices of that type, unless for a given element was another symbol was entered individually. Many other parameters may be inherited in the analogue way.

The data is edited in the table which allows the simultaneous determination of parameters for multiple elements. Linkage between the drawing and the table highlights in the drawing the element edited in the table.

Data inheritance system allows you to:

  • significant time savings on data entry stage (eliminates the need for entering of repetitive data many times)
  • very quick change of repetitive data in case of changes of design assumptions or preparing variant designs.

Working in a shared environment Audytor SET

The program (since version 7.0) has been created as a module of the Audytor SET program and enables the simultaneous design of cooling, cold and hot water systems together with circulation and central heating installations. Individual modules of the program cooperate with each other and use a common 2D and 3D graphic environment.

Backup system of data files

The program has a mechanism that automatically creates a set of project backups (up to 8 files).

Data files are backed up every time data is saved, with the new files overwriting the older files so that at least one copy of the file from each stage of the project work is always kept.

This function will allow you to recover the project file even if its last versions are overwritten or damaged.

Drawing support functions

  • The mouse cursor takes the shape of a small image of adequate to the currently used function.
  • Auxiliary lines are displayed suggesting an automatic connection to specific characteristic points (e.g. radiator connection points).
  • Pipes can be drawn as pairs (supply/return) with a selected spacing, which, if necessary, automatically adjusts to the connected devices (e.g. to the spacing of the connection points of radiators).
  • Drawing pipes as a polygonal chain reduces the number of required mouse clicks.
  • Automatic insertion of radiators under windows.
  • Automatic connection of radiators with bottom connection to the pipes.
  • The possibility of duplicating any parts of a drawing within one storey or to the next storey.
  • The ability to create a mirror image of the elements.
  • The possibility of using ready-made blocks. Delivered with the software library of standard parts of a drawing (blocks) such as riser-storeys, the elements of apartment and manifold system allows for quick creation of the diagram.
  • Possibility to define an unlimited number of custom blocks consisting of any parts of the drawing. Predefined blocks can be used in subsequent projects.

Three-dimensional visualization of the installation

The function allows you to export the installation project to a file that can later be loaded into Autodesk® Revit® using the Audytor SET plugin for Revit.

The function allows you to export from the data and export from the results. Export from data allows you to save even an incomplete installation project (not recalculating), for example, the arrangement of the water risers, or the layout of the radiators. Export from results allows us to use technical data of selected pipes and devices in Autodesk® Revit®, eg pipe diameters, valve settings, radiator sizes, and pipe spacing in underfloor heating. In addition, physical quantities are available, such as the medium speed, the power of the radiator, and pressure losses.

Read more

Automatic axonometry of the installation

The program since version 7.1 has a mechanism that automatically generates the axonometric scheme of the designed installation.

Axonometry drawing can be printed or exported to DWG format, which allows to create a complete project documentation.

The axonometry schema also allows displaying the scheme of the entire installation in one drawing allowing for a more precise orientation in the project and selecting and simultaneously editing the element data on different floors, which significantly speeds up the procedure of design modification and installation adjustment.

The function of organizing zones of risers on the diagrams

In the drawing of the automatically created installation diagrams, the Organize button that has been added, enables the intelligent positioning of the zones of risers based on the data from the storey's plan views.

The program maintains the order of the risers within individual installation systems (CH, CC and H2O).

The function is particularly useful for large projects, significantly reducing the time needed to manually move the risers' zones.

The parameters of the organizing function can be modified.

Checking data and calculation results

Each inputted component is equipped with the validation and support system that allows to obtain information about the values or evokes the relevant catalogue, as well as test of data.

While entering data the program checks its correctness on an ongoing basis. This allows a significant reduction in the number of errors. During the calculation process, complete data validation takes place. As the result of that the list of errors, warnings and hints is created. The list includes the information about the significance levels and the place of the problems.

After the calculations, program analyses the obtained results. The analogue list of messages is created. Extensive system diagnostics enables the designer to fully assess the quality of the design. The program is equipped with a mechanism for quick search of where the error occurred (automatic finding a table, a row and a column with wrong data and faulty component is indicated in the drawing).

Results of calculations

The results of calculation are presented in both graphical and tabular form. Format individual system component labels can be freely modified (the selection of displayed values and style of labels).

The format of tables can be changed (selection of displayed columns and rows, font sizes) and sorted according to any key. 
The tables contain the overall results and detailed results for individual devices, circuits and lists of materials and fittings. 
In the drawings with results, there are labels containing the data specific for the indicated device. The form of labels is fully editable. All results available for the specific element can be put on the label. Many formats of labels can be saved and later on changed immediately.

The calculation results can be printed on a plotter or a printer. The user can select the scale of drawing and use the print preview to determine how drawings will be printed.

If the drawing does not fit one sheet of paper, the program prints it in fragments, which then can be taped together. As a result, using even the simplest A4 printer, large drawings may be prepared. The program is also capable of storing drawings in DXF or DWG files. The saved drawings can then be loaded into other software, e.g. AutoCAD.

Tables with calculation results can be printed, or exported to other applications running in Windows environment (e.g. a spreadsheet, a word processor etc.).

Technical requirements

The program runs under MS Windows (7, 8, 8.1, 10) 32bit and 64 bit.

The minimum hardware:

  • 1200 MHz processor, 
  • 1 GB RAM, 
  • A color monitor with a minimum screen resolution of 1024x768,
  • 200 MB free space on the hard drive,
  • Compatible graphics card with OpenGL 2.0 and higher: all new graphics cards on the market should meet the minimum hardware requirements;Graphics card integrated with the motherboard: minimum GMA 500;

Hardware requirements for the 3D editor

Vertical resolution requirements for the screen: 
- minimum - 768 points, 
- sufficient for comfortable work - 900 points, 
- the most convenient - 1080 points. 

Requirements for system font settings: 
- Windows Vista, 7, 8 - fonts "100% smaller", 
- Windows XP - "normal" fonts. 

The computer should have a graphics card that supports OpenGL technology in the version: 
- minimum 2.0, 
- sufficient for comfortable work: 3.3 and higher.


How can I check which graphics card model is on my computer? 
- Windows Vista, 7, 8: Control Panel/System/Device Manager/Graphics Cards, 
- Windows XP: Control Panel/System/Hardware/Device Manager/Graphics Cards.

Not recommended graphics cards that do not support OpenGL 2.0 (according to the manufacturer's data), on which the 3D editor will not work:

 

ATI/AMD: 
- ATI Rage 
- Original "ATI Radeon", jak i Radeon DDR, Radeon 7000, Radeon VE, LE, 
- Mobility Radeon 7500, 9000 
- Radeon 8500, 9000, 9200 and 9250. 

Nvidia: 
- Riva, Riva TNT 1 i 2, Vanta, 
- GeForce256, GeForce2, GeForce3, GeForce4, GeForce FX 
- Quadro 
- Quadro NVS (50, 100, 200, 210S, 280) 

Intel: 
- Intel740 
- Extreme Graphics (1-2) 
- GMA 900, 950 
- GMA 3100, GMA 3150 
- HD Graphics (Rok 2010) 
- HD Graphics (CPU Sandy Bridge) (Rok 2011) 
- HD Graphics 2000 
- HD Graphics 2500 
- HD Graphics 3000 
- HD Graphics P3000 
and most of the integrated ones

OpenGL 2.0 support cards (sufficient

ATI/AMD: 
- Mobility Radeon 9600, 9700 
- Radeon X300, X550, X600 
- Radeon X700–X850. 
- Radeon X1300–X1950 

Nvidia: 
- GeForce 6 (GeForce 6xxx) 
- GeForce 7 (GeForce 7xxx) 
- Quadro FX Series 
- Quadro FX (x300) Series 
- Quadro FX (x400) Series 
- Quadro FX (x500) Series 
- Quadro NVS 285 

Intel: 
- GMA 500 
- GMA 600 
- GMA 3000 
- GMA 3600 
- GMA 3650 
- GMA X3000 - X3500 
- GMA 4500 
- GMA X4500 
- GMA X4500HD 
- GMA 4500MHD


OpenGL 3.3 support cards (recommended)

ATI/AMD: 
- Radeon HD 2000 series. 
- Radeon HD 3450-3650, Radeon Mobility HD 2000 and 3000 series. 
- Radeon HD 3690-3870. 
- Radeon HD 4000 series. 
- FireStream 

Nvidia: 
- GeForce 8 (GeForce 8xxx) 
- GeForce 9 (GeForce 9xxx) 
- GeForce 100 Series 
- GeForce 200 Series 
- GeForce 300 Series 
- Quadro FX (x600) Series 
- Quadro FX (x700) Series 
- Quadro FX (x800) Series 
- Quadro NVS (290 - 300) 

Intel: 
- HD Graphics 4000 
- HD Graphics P4000 
- HD Graphics 4200 
- HD Graphics 4400 
- HD Graphics 4600 
- HD Graphics 5000 
- Iris Graphics 5100 
- Iris Pro Graphics 5200 

OpenGl 4.2 
- FirePro Workstation 
- FirePro Server 

OpenGl 4.3 and higher
ATI/AMD: 
- Radeon HD 5000 series 
- Radeon HD 6000 series 
- Radeon HD 7000 series 
- Radeon HD 8000 series 
- Radeon HD 9000 series 

Nvidia: 
- GeForce 400 Series 
- GeForce 500 Series 
- GeForce 600 Series 
- GeForce 700 Series 
- Quadro x000 
- Quadro Kxxx Series 
- Quadro NVS (310 - 510)

 

Wikipedia source:

Cards with AMD Chipsets

Cards with Intel Chipsets

Cards with nVidia Chipsets